Sum Index, Difference Index and Exclusive Sum Number of Graphs

نویسندگان

چکیده

Abstract We consider two recent conjectures made by Harrington, Henninger-Voss, Karhadkar, Robinson and Wong concerning relationships between the sum index, difference index exclusive number of graphs. One conjecture posits an exact relationship first invariants; we show that in fact predicted value may be arbitrarily far from truth either direction. In process establish some new bounds on both index. The other conjecture, can exceed large amount, follows known, but non-constructive, results; give explicit construction demonstrating it. Simultaneously with preprint this paper appearing, Harrington et al. updated their counterexamples to conjecture; however, only a discrepancy 1, one They therefore modified equality inequality; our results is still false general.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

On Sum–Connectivity Index of Bicyclic Graphs

We determine the minimum sum–connectivity index of bicyclic graphs with n vertices and matching number m, where 2 ≤ m ≤ ⌊n2 ⌋, the minimum and the second minimum, as well as the maximum and the second maximum sum–connectivity indices of bicyclic graphs with n ≥ 5 vertices. The extremal graphs are characterized. MSC 2000: 05C90; 05C35; 05C07

متن کامل

The Maximum Balaban Index (Sum-Balaban Index) of Unicyclic Graphs

The Balaban index of a connected graph G is defined as J(G) = |E(G)| μ+ 1 ∑ e=uv∈E(G) 1 √ DG(u)DG(v) , and the Sum-Balaban index is defined as SJ(G) = |E(G)| μ+ 1 ∑ e=uv∈E(G) 1 √ DG(u)+DG(v) , where DG(u) = ∑ w∈V (G) dG(u,w), and μ is the cyclomatic number of G. In this paper, the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on n v...

متن کامل

On the variable sum exdeg index and cut edges of graphs

The variable sum exdeg index of a graph G is defined as $SEI_a(G)=sum_{uin V(G)}d_G(u)a^{d_G(u)}$, where $aneq 1$ is a positive real number,  du(u) is the degree of a vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable sum exdeg index among all the graphs having a fixed number of vertices and cut edges, for every a>1.

متن کامل

The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains

As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2023

ISSN: ['1435-5914', '0911-0119']

DOI: https://doi.org/10.1007/s00373-023-02624-0